6 research outputs found

    Generating airborne ultrasonic amplitude patterns using an open hardware phased array

    Get PDF
    Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms.This research was funded by the Government of Navarre (FEDER) 0011-1365-2019-000086 and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017746, TOUCHLESS

    TOUCHLESS: demonstrations of contactless haptics for affective touch

    Get PDF
    A set of demonstrators of contactless haptic principles is described in this work. The technologies are based on electrostatic piloerection, chemical compounds and ultrasound. Additionally, applications related to affective touch are presented, ranging from storytelling to biosignal transfer, accompanied with a simple application to edit dynamic tactile patterns in an easy way. The demonstrators are the result of the Touchless project, which is a H2020 european collaborative project that integrates 3 universities and 3 companies. These demostrators are contactless haptic experiences and thus facilitate the come-and-interact paradigm, where users can approach the demo booth and directly experience the applications without having to wear devices, making the experience fast and hygienic.Funded by EU Horizon 2020 research and innovation programme grant agreement No 101017746 TOUCHLESS
    corecore